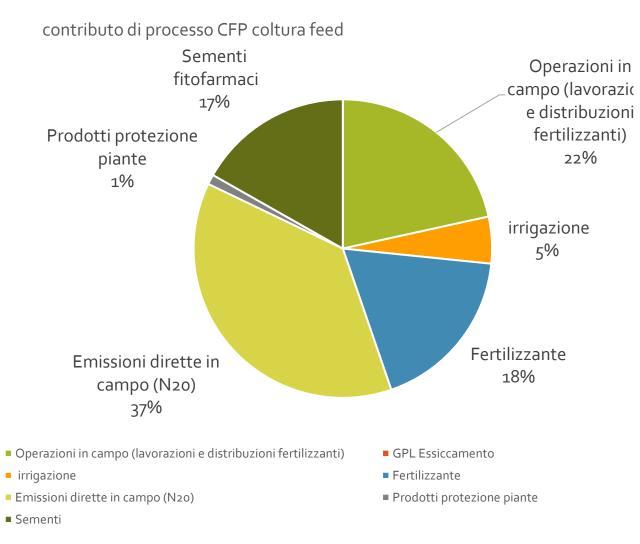
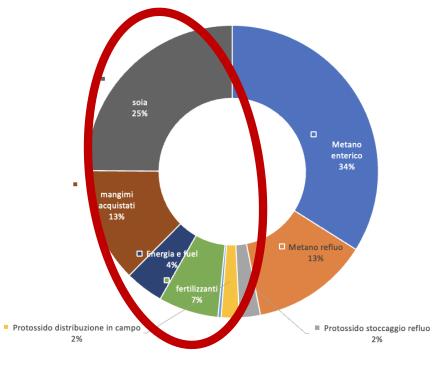


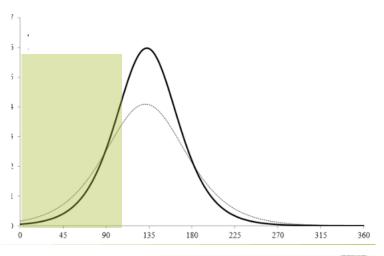
MIdA: Il digestato usato con efficienza sostituisce il fertilizzante minerale

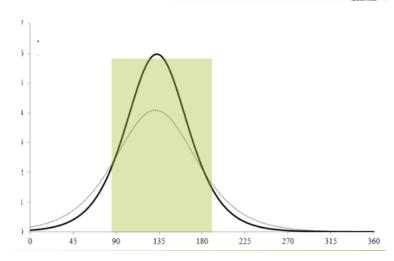
Giuliana D'Imporzano ARAL UNIMI



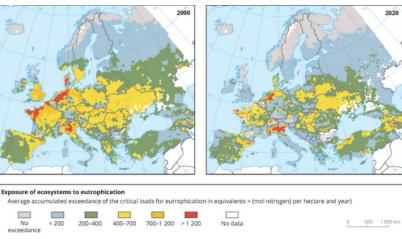


Progetto MidA cofinanziato dall'operazione 1.2.01 "Progetti dimostrativi e azioni di informazione" del Programma di Sviluppo Rurale 2014 – 2020 della Regione Lombardia.


Il digestato usato con efficienza sostituisce il fertilizzante


minerale

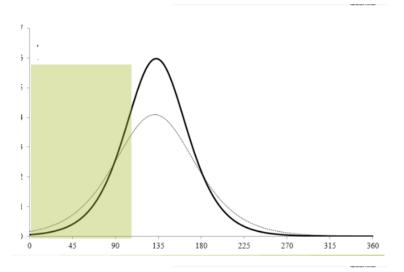
Il digestato usato con efficienza sostituisce il fertilizzante minerale

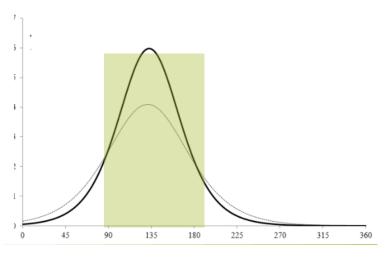

Premessa....

Sostituire i fertilizzanti chimici non è obbligatorio, ma nel contesto zootecnico padano è saggio

- I nutrienti rinnovabili sono una risorsa aziendale
- L'elevata quantità di NP che deriva dall'allevamento, se non è gestita correttamente è un problema di tutti
- Se non c'è una gestione ottimizzata l'alternativa diventa il trattamento

La sostituzione dei fertilizzanti chimici deve avvenire senz perdere produzione o impattare sull'ambiente


I pilastri dell'uso efficiente dei nutrienti


• Digestione anaerobica del refluo per ottenere un digestato stabilizzato

 Distribuzione di precisione dei nutrienti: quanto serve, quando serve e nel migliore dei modi (iniezione/incorporazione diretta).

Distribuzione in presemina e copertura Distribuzione in presemina con inibitore della nitrificazione Completa sostituzione del fertilizzante di sintesi

I pilastri dell'uso efficiente dei nutrienti

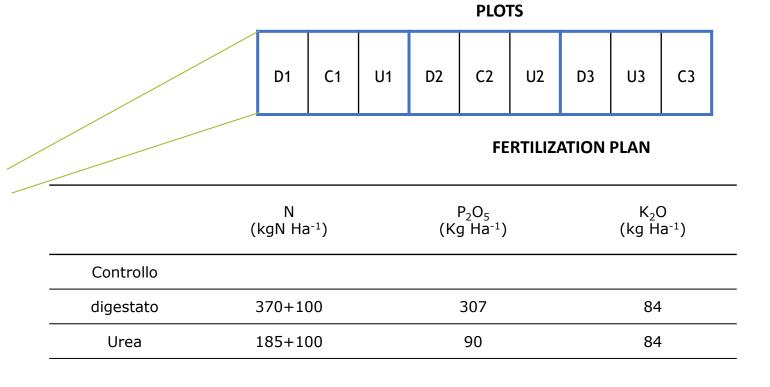
Digestione anaerobica per ottenere un digestato stabilizzato

Distribuzione in presemina e copertura Distribuzione in presemina con inibitore della nitrificazione Completa sostituzione del fertilizzante di sintesi

Digestato **stabilizzato** usato a bilancio colturale in

Iniezione o incorporazione diretta Distribuzione nei momenti di massimo assorbimento delle colture, (presemina e copertura)

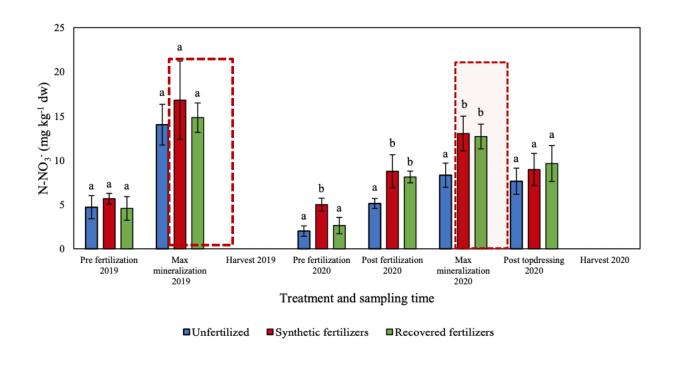
Elevata efficienza d'uso dell'azoto


Da quali numeri partono gli attuali progetti dimostrativi

Sperimentazioni condotte dal DISAA Gruppo Ricicla e ARA Lombardia da oltre 10 anni

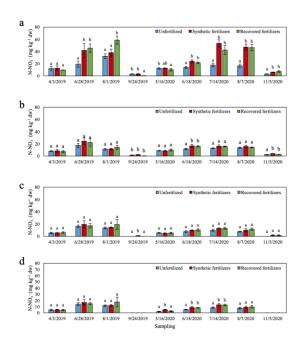
L'ultima sperimentazione di tre anni consecutivi

FIELD



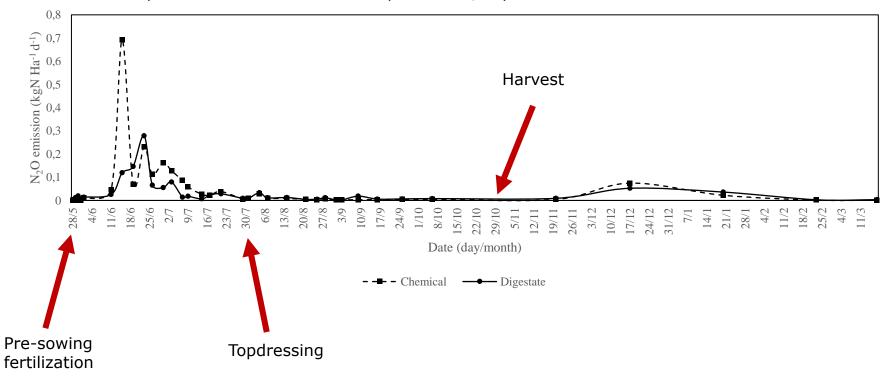
Stessa produzione e stesse emissioni dell'uso di urea

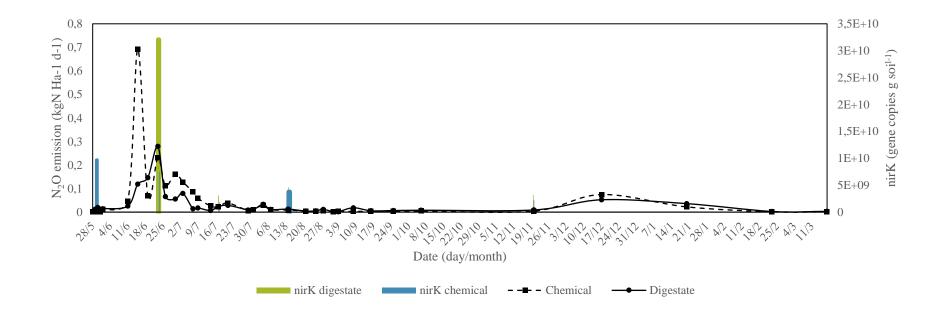
Tabella 1. Emissioni di ammoniaca e GHG, lisciviazione di nitrati, rese produttive e carbonio residuo nei suoli in una sperimentazione di pieno campo condotta per tre anni confrontando digestato vs. urea (concimi chimici) Le misure sono medie su tutto l'anno. (da: H2020 Systemic, H2020 Nutry2Cycle, in preparazione).


Parameter	Unità	Digestato	Urea	
NH_3	kgN ha ⁻¹	$25.6 \pm 9.4(a)$	$24.8 \pm 8.3(a)$	
N_2O	kgN ha ⁻¹	$7.59 \pm 3.2(b)$	$10.3 \pm 6.8(b)$	
CO_2	kgC ha ⁻¹	$6216 \pm 1160(a)$	$6144 \pm 1491(a)$	
$\mathrm{CH_4}$	kgC ha ⁻¹	$0036\pm0.03(a)$	$0.053 \pm 0.04 (a)$	
NO_3^{-1}	mgN kg ⁻¹	$6.45 \pm 7.6(a)$	$7.24 \pm 8.6(a)$	
Resa produttiva	t ha ⁻¹ ss	$18.1\pm2.9(b)$	$17.4 \pm 1.2(b)$	
Carb. suolo	g kg ⁻¹ ss	$12.3 \pm 0.4(b)$	10.3 ± 0.6 (a)	

Nitrato negli strati profondi (1mt)

Nitrate at 1 mt depth


- Nitrato monitorato nei momenti salienti del ciclo colturale
- Concentrazione analoga al fertilizzante chimico


EMISSIONI N₂O

L'uso efficiente da parte della coltura rduce l'emission di protossido, la distribuzione in copertura è meno emissiva di quella in presemina

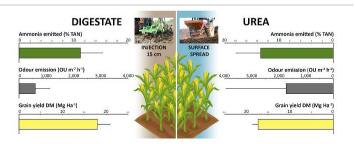
Nella competizione tra batteri e coltura per l'azoto, la pianta vince

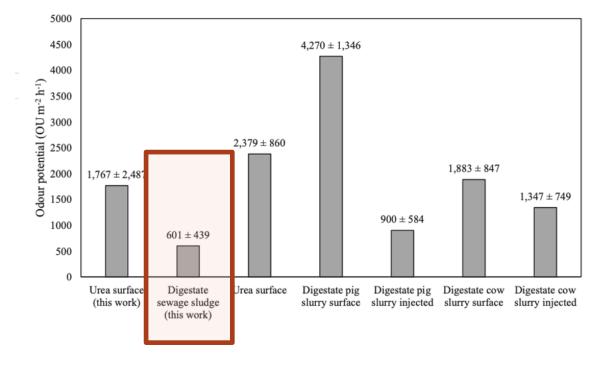
BATTERI RESPONSABILI DELLA DENITRIFICAZIONE

nirk is used to quantify the bacteria involved in the first step of denitrification: $NO_3^- -> N_2O$

Odori

Measuring ammonia and odours emissions during full field digestate use in agriculture


Massimo Zilio ^a, Ambrogio Pigoli ^a, Bruno Rizzi ^a, Gabriele Geromel ^b, Erik Meers ^c, Oscar Schoumans ^d, Andrea Giordano ^b, Fabrizio Adani ^{a,*}


- ^a Gruppo Ricicla labs., DiSAA, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
- b Acqua & Sole Srl, Via Giulio Natta, 27010 Vellezzo Bellini (PV), Italy
- ^c Dept. Green Chemistry & Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- ^d Wageningen Environmental Research, Wageningen University and Research, PO Box 47, 6700AA Wageningen, the Netherlands

HIGHLIGHTS

- Ammonia emitted in open field using injected digestate and urea were comparable.
- Ammonia emitted were of 25.6 \pm 9.4 and 24.8 \pm 8.3 kg N Ha $^{-1}$ for digestate and usea
- Digestate injection led to low odour emission, i.e. $601 \pm 531 \ OU \ m^{-2} \ h^{-1}$
- The agronomic performances of digestate were comparable with those of urea.

GRAPHICAL ABSTRACT

Dimostriamolo ancora....

Giornata dimostrativa e sperimentale

Iniezione di digestato su mais di secondo raccolto

	Presemina		Copertura		
		kg N/ha		kg N/ha	produzione ton/ha
Standard (Digestato+ urea in copertura)	digestato	192	Urea	70	54.6
Tesi 1 (Digestato +inibitore)	digestato	192	-		53.0
Controllo (Digestato senza inibitore)	digestato	192	-		51.4
Tesi 2(Digestato presemina+ digestato copertura)	digestato	192	Digestato	90	54.0

Digestato Liquido distribuito in campo Digestato solido venduto per la prepar azione di fertilizzanti organici Solfato di ammonio (venduto)

Diffondiamo

Giornata dimostrativa

Valorizzazione interaziendale dei reflui zootecnici in impianti di biogas

Blu energy power:

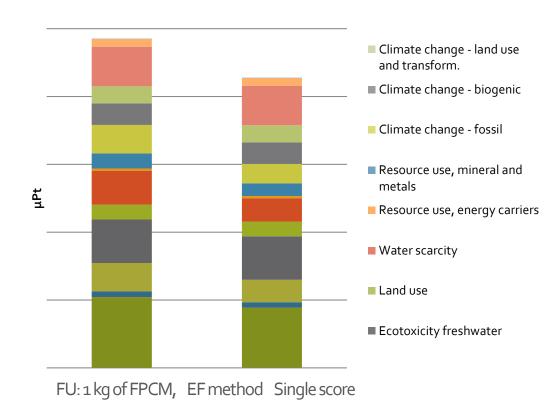
22.500 ton/anno di refluo prodotto in azienda

40.000 ton/anno di letame bovino acquisito

47 aziende conferenti

10 km: distanza massima

95 % dell'alimentazione reflui


5% insilato di mais

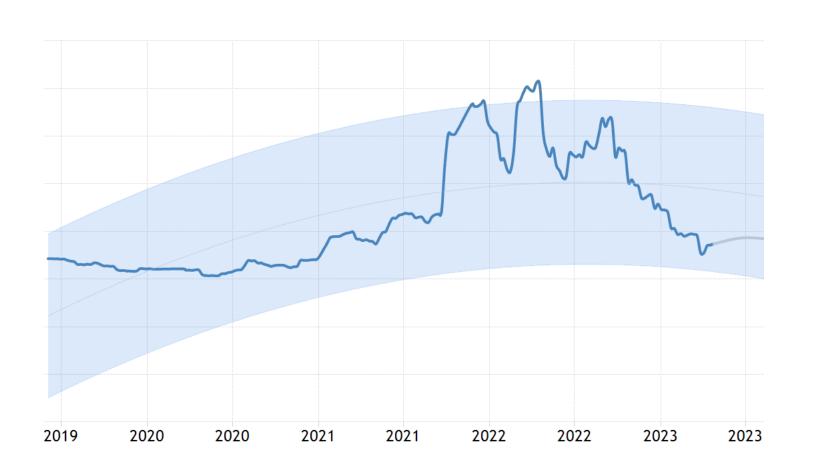
La DA è uno strumento di sostenibilità per la zootecnia

Anche su frumento

12/10/23 Distribuzione di digestato in presemina di frumento

Cantiere: refluo deposto a livello del suolo, incorporazione immediata con dischiera posteriore. Il passaggio funziona già come lavorazione per il letto di semina (lavorazione superficiale a 10-15 cm).

Piano di fertilizzazione per il frumento

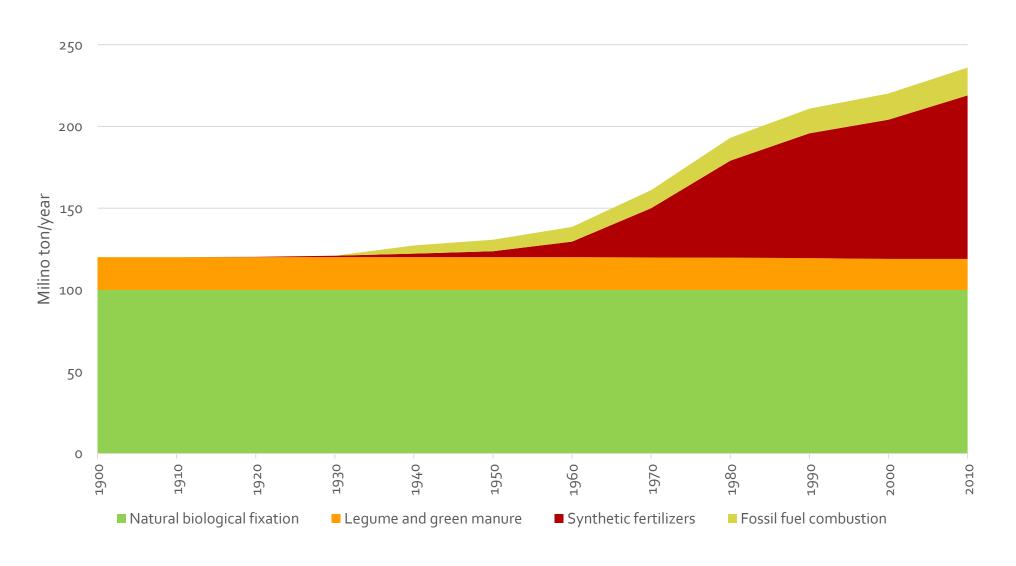

Presemina: 100kg/ha di azoto, iniezione di digestato (40 m3/ha) Copertura 100 kg/ha di azoto, iniezione di digestato (40 m3/ha)

Gestire bene costa di più?

Piano di concimazione 1			
Digestato	KgN/ha	333	
Urea (N)	KgN/ha	114	
Azoto totale distribuito	KgN/ha	446	
Costi differenziali (trasporto distribuzione, urea)	€	352	
Piano di concimazione 2			
Digestato solido in presemina	KgN/ha	48	
Digestato in copertura	kg/ha	284	
Azoto totale distribuito	kg/ha	332	
Costi differenziali (trasporto distribuzione)	€	356	

Piano di concimazione 3non a norma			
Digestato su metà della superficie vicina	KgN/ha	665	
Urea_(N) su tutta l'altra superficie	KgN/ha	140	
Azoto totale	KgN/ha	805	
Costi differenziali	€	225	131

Andamento dei prezzi urea


I costi ambientali

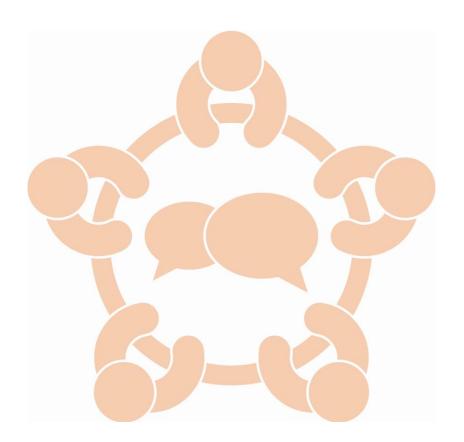
Piano di concimazione 1			
Digestato	KgN/ha	333	
Urea (N)	KgN/ha	114	
Azoto totale distribuito	KgN/ha	446	
Costi differenziali (trasporto distribuzione, urea)	€	352	
Emissioni N ₂ O (CO2eq)	KgCO2 eq/ha	1790	+ 34%
Piano di concimazione 2			
Digestato solido in presemina	KgN/ha	48	
Digestato in copertura	kg/ha	284	
Azoto totale distribuito	kg/ha	332	
Costi differenziali (trasporto distribuzione)	€	356	
Emissioni N ₂ O (CO2 eq)	Kg CO2 eq/ha		

Piano di concimazione 3non a norma			
Digestato su metà della superficie vicina	KgN/ha	665	
Urea_(N) su tutta l'altra superficie	KgN/ha	140	
Azoto totale	KgN/ha	805	
Costi differenziali	€	225	
Emissioni N2O	Kg CO2 eq/ha	3800	+ 45%

La gestione efficiente dell'azoto è l'impegno più concreto e significativo che l'agricoltura può prendersi per contribuire alla riduzione dell'effetto serra.

Input di azoto nel sistema agricolo globale

Barriere all'implementazione: Focus group per condividere barriere o plus


Temi emersi rispetto all'innovazione

risparmio di fertilizzante e minori vincoli con distribuzione per iniezione.

- ---
- •Semplicità dell'uso del fertilizzante chimico
- •gestione del tempo/riorganizzazione del cantiere produttivo
- calpestamento
- •Timore rispetto rese produttive

Possibili booster: utilizzare l'azoto del digestato a bilancio colturale e la possibilità conseguente di aumentare le produzioni zootecniche

Circolarità e recupero di nutrienti

L'uso efficiente del digestato

- permette un recupero di elementi fertilizzanti sostenibile e sicuro
- Offre una soluzione concreta ed alle problematiche dell'agricoltura a livello locale (emissioni di ammoniaca, lisciviazione dei nitrati)
- Offre una soluzione concreta alle problematiche dell'agricoltura a livello globale (riduzione emission GHG)
- Preserva la qualità dei suoli e del territorio

Grazie dell'attenzione!!

Fabrizio.adani@unimi.it
Giuliana.dimporzano@gmail.com

Progetto MidA cofinanziato dall'operazione 1.2.01 "Progetti dimostrativi e azioni di informazione" del Programma di Sviluppo Rurale 2014 – 2020 della Regione Lombardia.